The Divergence of a Vector Field

The mathematical definition of divergence is:

$$
\nabla \cdot \mathbf{A}(\bar{r})=\lim _{\Delta v \rightarrow 0} \frac{\oiint_{s} \mathbf{A}(\bar{r}) \cdot \overline{d s}}{\Delta v}
$$

where the surface S is a closed surface that completely surrounds a very small volume Δv at point \bar{r}, and where $\overline{d s}$ points outward from the closed surface.

From the definition of surface integral, we see that divergence basically indicates the amount of vector field $\mathbf{A}(\bar{r})$ that is converging to, or diverging from, a given point.

For example, consider these vector fields in the region of a specific point:

$$
\nabla \cdot A(\bar{r})<0
$$

$\nabla \cdot A(\bar{r})>0$

The field on the left is converging to a point, and therefore the divergence of the vector field at that point is negative. Conversely, the vector field on the right is diverging from a point. As a result, the divergence of the vector field at that point is greater than zero.

Consider some other vector fields in the region of a specific point:

For each of these vector fields, the surface integral is zero. Over some portions of the surface, the normal component is positive, whereas on other portions, the normal component is negative. However, integration over the entire surface is equal to zero-the divergence of the vector field at this point is zero.

* Generally, the divergence of a vector field results in a scalar field (divergence) that is positive in some regions in space, negative other regions, and zero elsewhere.
* For most physical problems, the divergence of a vector field provides a scalar field that represents the sources of the vector field.

For example, consider this two-dimensional vector field $\mathbf{A}(x, y)$, plotted on the x, y plane:

We can take the divergence of this vector field, resulting in the scalar field $g(x, y)=\nabla \cdot A(x, y)$. Plotting this scalar function on the x, y plane:

Both plots indicate that the divergence is largest in the vicinity of point $x=-1, y=1$. However, notice that the value of $g(x, y)$ is non-zero (both positive and negative) for most points (x, y).

Consider now this vector field:

The divergence of this vector field is the scalar field:

Combining the vector field and scalar field plots, we can examine the relationship between each:

Look closely! Although the relationship between the scalar field and the vector field may appear at first to be the same as with the gradient operator, the two relationships are very different.

Remember:

a) gradient produces a vector field that indicates the change in the original scalar field, whereas:
b) divergence produces a scalar field that indicates some change (i.e., divergence or convergence) of the original vector field.

The divergence of this vector field is interesting-it steadily increases as we move away from the y-axis.

Yet, the divergence of this vector field produces a scalar field equal to one-everywhere (i.e., a constant scalar field)!

Likewise, note the divergence of these vector fields-it is zero at all points (x, y);

$\nabla \cdot \boldsymbol{A}(x, y)=0$

$$
\nabla \cdot A(x, y)=0
$$

Although the examples we have examined here were all twodimensional, keep in mind that both the original vector field, as well as the scalar field produced by divergence, will typically be three-dimensional!

